Solution a Class of Riemann-Liouville Derivative-Composition Fractional Order Optimal Control Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Fractional Ince equation with a Riemann-Liouville fractional derivative

We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...

متن کامل

B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy

In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...

متن کامل

Regularity of Mild Solutions to Fractional Cauchy Problems with Riemann-liouville Fractional Derivative

As an extension of the fact that a sectorial operator can determine an analytic semigroup, we first show that a sectorial operator can determine a real analytic α-order fractional resolvent which is defined in terms of MittagLeffler function and the curve integral. Then we give some properties of real analytic α-order fractional resolvent. Finally, based on these properties, we discuss the regu...

متن کامل

Stability analysis of a class of nonlinear fractional differential systems with Riemann-Liouville derivative

This paper investigates the stability of n-dimensional nonlinear fractional differential systems with Riemann-Liouville derivative. By using the Mittag-Leffler function, Laplace transform and the Gronwall-Bellman lemma, one sufficient condition is attained for the asymptotical stability of a class of nonlinear fractional differential systems whose order lies in (0, 2). According to this theory,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied Science and Technology

سال: 2018

ISSN: 2221-0997,2221-1004

DOI: 10.30845/ijast.v8n2a5